MECHANISMS OF DISEASE
FRANKLIN H. EPSTEIN, M.D., Editor

REVIEW ARTICLE

RENAL OSTEOODYSTROPHY
KEITH A. HRUSKA, M.D.,
AND STEVEN L. TEITELBAUM, M.D.

RENAL osteodystrophy, the term used to describe the skeletal complications of end-stage renal disease, is a multifactorial disorder of bone remodeling. The actions of some of the factors involved are well defined, and successful strategies have been designed to prevent them. For example, the identification of secondary hyperparathyroidism and 1α,25-dihydroxycholecalciferol (1α,25-dihydroxyvitamin D₃) deficiency as major contributors to renal osteodystrophy has led to the development of treatment regimens that can maintain normal serum calcium and phosphate concentrations, reduce parathyroid hormone secretion, and correct a deficiency of 1α,25-dihydroxycholecalciferol. These improvements in treatment have resulted in decreases in the frequency and severity of osteitis fibrosa, the most common type of renal osteodystrophy (Fig. 1).

During the 1970s and 1980s, it was discovered that an accumulation of aluminum from water used for dialysis and aluminum salts used as phosphate binders caused osteomalacia and an adynamic bone disease (Fig. 1). The identification of these disorders broadened the spectrum of renal osteodystrophy and led to changes in the composition of dialysis fluids and the substitution of calcium carbonate for aluminum salts. As a result, the frequency of aluminum-related bone disease is waning. Other factors must be involved, however, since the prevention of osteitis fibrosa and aluminum intoxication may not result in normal bone histology. Patients may have an adynamic bone disease or a mild bone disease (early osteitis fibrosa).

In this review, we focus on new pathophysiologic concepts of renal osteodystrophy and relate them to the management of this disorder in patients with end-stage renal disease. The roles of various cytokines, such as interleukin-1, tumor necrosis factor α, interleukin-6, and interleukin-11, and their soluble receptors or circulating antagonists are considered. These substances are involved in bone remodeling, and their activity is increased in patients with end-stage renal disease. In the context of adynamic bone disease, inhibitors of bone remodeling and the possible deficiency of bone growth factors are considered. The causative role of beta-glucocerebrosidase deficiency in the development of dialysis-related bone cysts and the osteoarthropathy syndrome has been elucidated elsewhere.

NORMAL BONE REMODELING

Renal osteodystrophy must be considered in the context of bone remodeling, a multistep coupled process consisting of the resorption of bone and its replacement by new bone at discrete locations in the skeleton (Fig. 2). The bone-remodeling cycle begins with an initiating event, such as the stimulation of osteoblast precursors and marrow stromal cells. Osteoblasts are derived from pluripotent mesenchymal stem cells, which give rise to resident marrow stromal-cell progenitors that can proliferate and differentiate into fibroblasts, chondrocytes, adipocytes, or muscle cells, as well as osteoblasts. Parathyroid hormone or locally produced interleukin-1 or tumor necrosis factor α stimulates the release of soluble factors from stromal cells and osteoblasts that induce the proliferation and differentiation of osteoclast precursors and activate the function of osteoclasts (Fig. 2). The soluble factors thought to be involved in the development of osteoclasts include macrophage colony-stimulating factor, granulocyte–macrophage colony-stimulating factor, interleukin-6, and interleukin-11.

Parathyroid hormone, tumor necrosis factor α, and interleukin-1 stimulate the production of osteoclasts at different stages of cell differentiation, leading to synergism when the concentrations of cytokines and parathyroid hormone are both elevated, as in chronic renal failure. In osteoblasts and bone lining cells that activate the resorptive process, parathyroid hormone, interleukin-1, or tumor necrosis factor α stimulates the secretion of collagenase and inhibits the synthesis of collagen and DNA (Fig. 3).

With the normal interactions among type I collagen, matrix proteins, and bone mineral disrupted, chemotactic factors are released locally, and osteoclasts are exposed to them. The leading candidates for this chemotactic role are the matrix proteins osteocalcin, osteopontin, and bone sialoprotein. Although all these factors interact with type I collagen, osteopontin and bone sialoprotein have the arginine–glycine–aspartic acid sequence for cell adhesion recognized by osteoclast integrins. These two chemotactic factors may be the natural ligands for integrin αvβ₃, which, when bound, directs chemotaxis and organizes the osteoclast for resorptive activity. The organized osteoclast features unique cell–matrix interactions in the region where the cell adheres to bone (osteoclast clear zone), which is not permeable to ions, and the insertion of...
vacuolar ATPases and cathepsins into a specialized area of plasma membrane (the ruffled border) that results in matrix degradation and mineral dissolution.37,38

After remodeling has been activated, bone is resorbed by multinucleated osteoclasts. When a quantity of bone has been resorbed, increased local concentrations of calcium39 or activation of latent factors in the bone matrix (e.g., transforming growth factor β)38 leads to diminished osteoclast activity, separation of osteoclasts from the bone surface, and apoptosis (Fig. 2).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Specimens of Normal Trabecular Bone and Trabecular Bone Showing the Histologic Types of Renal Osteodystrophy. Nondecalcified iliac-biopsy specimens from patients with end-stage renal disease were fixed in Millonig’s fluid and stained with a modified Masson stain ($\times40$). Panel A shows normal trabecular bone. The trabeculae consist of lamellar bone and are connected in a meshwork. The marrow spaces are occupied by normal hematopoietic and mesenchymal cells. At a higher magnification (not shown), lining cells, osteoblasts, and osteoclasts can be seen in normal numbers. Tetracycline labeling confirmed normal dynamic indexes of bone formation (not shown). Panel B shows osteitis fibrosa with prominent peritrabecular fibrosis (F), which is the hallmark of this disease. Increased rates of bone remodeling are demonstrated by numerous resorption lacunae, resulting in scalloped trabeculae, loss of trabecular connections, and the appearance of bone islands (arrowhead). At a higher magnification, more osteoclasts and osteoblasts would be seen. Increased bone formation is suggested by the amount of osteoid (red areas) and indexes of formation derived from tetracycline labeling (not shown). Panel C shows osteomalacia with increased unmineralized bone matrix (osteoid, red). Decreased rates of remodeling are suggested by the decreased activity and number of osteoclasts. Tetracycline labeling (not shown) demonstrated poorly organized and diminished mineralization fronts. The osteoid accumulates and is poorly resorbed. Panel D shows mixed disease, characterized by areas of fibrosis (F) and increased remodeling activity adjacent to areas of increased osteoid deposition, with poor mineralization and remodeling. Panel E shows adynamic bone disease, characterized by an absence of remodeling activity. The number of bone cells (osteoblasts and osteoclasts) is decreased, and there is minimal evidence of osteoid production.}
\end{figure}
Some of the same signals that decrease resorptive activity (transforming growth factor β and the heparin-bound growth factors — i.e., fibroblast growth factors) bring osteoblasts into the resorption lacunae and activate them. This process initiates bone formation (Fig. 2), which includes proliferation and differentiation of osteoblast precursors, matrix (osteoid) synthesis, mineralization, and resorption of woven bone and its replacement with lamellar, nutrient-supplied bone. At the end of the remodeling cycle, the amount of bone...
formed is slightly smaller than that which was resorbed. This difference increases with age, so that older patients with end-stage renal disease may have osteopenia that is independent of renal osteodystrophy.

Of the factors that increase bone formation, parathyroid hormone is the best known.42-44 Administration of parathyroid hormone induces bone formation, at least in part because of its ability to increase the pool of osteoblast precursors.45 Parathyroid hormone also increases the production of insulin-like growth factor I by osteoblasts in vitro46 and in vivo.46 The extent to which increased production of insulin-like growth factor I contributes to the expansion of the osteoblast pool is unclear, but the growth factor alone does not account for all the anabolic function of parathyroid hormone.44

In osteitis fibrosa, the role of parathyroid hormone in bone formation is reflected by the increases in numbers of osteoblasts, alkaline phosphatase activity, and bone-matrix production.45

Pathophysiology

Renal osteodystrophy is classified as osteitis fibrosa, osteomalacia, or mixed, mild, or adynamic disease, according to the histologic features (Table 1).

Osteitis Fibrosa

The classic histologic form of renal osteodystrophy is osteitis fibrosa, which is caused by secondary hyperparathyroidism with contributions from locally derived cytokines and a deficiency of 1α,25-dihydroxycholecalciferol (1α,25(OH)\textsubscript{2}D\textsubscript{3}). A hallmark of osteitis fibrosa is marrow fibrosis, caused by the activation of marrow mesenchymal cells, which differentiate into fibroblast-like cells secreting the fibrous tissue occupying peritrabecular spaces. Another feature of this disorder is the increased frequency of bone remodeling, leading to increased resorption of bone. The increased resorption is caused by an increase in both the number and the activity of osteoclasts. Bone formation is also increased, as reflected by increased amounts of osteoid and nonlamellar bone, which are hallmarks of a high rate of bone turnover.45

In osteitis fibrosa the focus of abnormal remodeling activity is often in the cortical osteons of long bones, leading to increased cortical porosity as a result of resorption and remodeling. In cortical osteons remodeling involves osteocytes and the osteocytic network that communicates with lining cells along the haversian canals. Osteocytes are important as sensors of mechanical strain and local damage, but their regulation by hormones and cytokines has not been studied extensively.46

The effect of end-stage renal disease on osteocyte function is unknown. In long bones increased cortical resorption tends to reduce the bone mass, but in trabecular bone the accumulation of woven bone may leave the bone mass unchanged, despite a decrease in lamellar bone.45 Osteitis fibrosa may be associated with osteopenia and fractures, but measurements of bone density do not correlate well with bone strength because of confounding variables, such as dystrophic mineralization and the accumulation of woven bone (mineralized, nonlamellar, immature bone), which is much weaker than its lamellar counterpart.

Another important factor in the pathophysiology of renal osteodystrophy is the deficiency of 1α,25-dihydroxycholecalciferol (Table 2). In end-stage renal disease, this deficiency results in decreased intestinal absorption of calcium and increased secretion of para-

Figure 3. The Effects of Secondary Hyperparathyroidism, 1α,25-Dihydroxycholecalciferol (1α,25(OH)\textsubscript{2}D\textsubscript{3}) Deficiency, and Vitamin D Treatment on Cells of Osteoblast Lineage during Remodeling.

Cells of the mature osteoblast phenotype, such as bone lining cells, are stimulated by parathyroid hormone (PTH) to decrease the expression of proteins associated with bone formation (i.e., type I collagen and noncollagenous bone matrix proteins). In addition, PTH increases the expression of collagenase and plasminogen activator, whereas the tissue inhibitors of metalloproteinases are unaffected. As a result, matrix-dissolution products (osteopontin, bone sialoprotein, and collagen degradation fragments) are released that may serve as direct activators and chemoattractants of osteoclasts. In addition, PTH stimulates the secretion of interleukin-6 (IL-6) and interleukin-11 (IL-11) by cells of the osteoblast lineage that are not attached to the bone matrix, which may include the stromal–cell–osteoblast progenitor cells. Osteoblastic activity produces matrix deposition of latent transforming growth factor β (TGF-β), which, when activated during resorption, is a major factor producing local negative feedback for the resorption of osteoclasts and stimulation of the repair component of the remodeling cycle (i.e., bone formation). The stimulation of osteoblast growth factors by PTH also contributes to the later phases of bone formation. An example is PTH stimulation of the production of insulin-like growth factor I (IGF-I). BSP II denotes bone sialoprotein II, TIMP tissue inhibitor of metalloproteinase, and bFGF basic fibroblast growth factor.
thyroid hormone.17 1α,25-Dihydroxycholecalciferol is a critical differentiation factor in the skeleton for both osteoblasts21 and osteoclasts (Fig. 2).11 The effect of its deficiency on histologic characteristics of bone in patients with end-stage renal disease is difficult to assess; 1α,25-dihydroxycholecalciferol is deficient in all forms of renal osteodystrophy, and relations between specific abnormalities and serum 1α,25-dihydroxycholecalciferol concentrations have not been established. The important role of 1α,25-dihydroxycholecalciferol in the organization and mineralization of bone matrix is demonstrated by its strong transcriptional up-regulation of the genes for osteocalcin and osteopontin (Fig. 3),21 which are secreted by differentiated osteoblasts at the time of mineralization. Reduced secretion of these matrix proteins by osteoblasts would be expected to affect matrix organization and mineralization. 1α,25-Dihydroxycholecalciferol also inhibits cell proliferation by decreasing the expression of c-myc proto-oncogenes, which regulate the cell cycle. This effect is important to consider in treating patients with well-controlled serum parathyroid hormone concentrations, because the use of 1α,25-dihydroxycholecalciferol may promote the development of adynamic bone disease.6 The clearest clinical role of 1α,25-dihydroxycholecalciferol in renal osteodystrophy is its ability to prevent secondary hyperparathyroidism by correcting hypocalcemia and inhibiting parathyroid hormone gene transcription.49 Besides hypocalcemia and a deficiency of 1α,25-dihydroxycholecalciferol, chromosomal deletions50 and decreased concentrations of vitamin D receptors in parathyroid tissue also cause secondary hyperparathyroidism in patients with end-stage renal disease13 (Table 2). Recent clinical trials of vitamin D sterols in the treatment of renal osteodystrophy provide evidence that alkaline phosphatase and parathyroid hormone escape the suppressive actions of alfalcacidol and calcitriol.51 These studies support the concept that factors other than hypocalcemia and 1α,25-dihydroxycholecalciferol deficiency lead to secondary hyperparathyroidism.7,6

Table 1. Histologic Classification of Renal Osteodystrophy.

<table>
<thead>
<tr>
<th>DISORDER</th>
<th>DESCRIPTION</th>
<th>PATHOGENESIS</th>
<th>FREQUENCY (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteitis fibrosa</td>
<td>Peritubular fibrosis, increased remodeling — resorption and formation</td>
<td>Secondary hyperparathyroidism, secondary role of cytokines and growth factors</td>
<td>50</td>
</tr>
<tr>
<td>Osteomalacia</td>
<td>Increased osteoid, defective mineralization</td>
<td>Aluminum deposition, plus unknown factors</td>
<td>7</td>
</tr>
<tr>
<td>Mixed disease</td>
<td>Features of both osteitis fibrosa and osteomalacia</td>
<td>Secondary hyperparathyroidism and aluminum deposition, plus unknown factors</td>
<td>13</td>
</tr>
<tr>
<td>Mild disease</td>
<td>Slightly increased remodeling</td>
<td>Early or treated secondary hyperparathyroid</td>
<td>3</td>
</tr>
<tr>
<td>Adynamic renal bone disease</td>
<td>Hypocellular bone surfaces, no remodeling</td>
<td>Aluminum deposition,parathyroid hormone suppression, and other factors (deficiency of bone growth factors or increased suppressors of bone remodeling)</td>
<td>27</td>
</tr>
</tbody>
</table>

*The frequency at the start of therapy for end-stage renal disease is shown. Data are from Hutchison et al.7 Although the data are based on a small series, the distribution of disorders is similar to that generally seen in current clinical practice.

Table 2. Factors Contributing to Renal Osteodystrophy.

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>ROLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary hyperparathyroidism</td>
<td>Contributes to osteitis fibrosa</td>
</tr>
<tr>
<td>Hypocalcemiaa</td>
<td></td>
</tr>
<tr>
<td>1α,25-dihydroxycholecalciferol</td>
<td></td>
</tr>
<tr>
<td>deficiencya</td>
<td></td>
</tr>
<tr>
<td>Parathyroid gland abnormalities</td>
<td></td>
</tr>
<tr>
<td>Chromosomal alterations99</td>
<td></td>
</tr>
<tr>
<td>Vitamin D–receptor deficiencyb</td>
<td>Causes defective mineralization (osteomalacia)</td>
</tr>
<tr>
<td>Metal intoxication</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td></td>
</tr>
<tr>
<td>Local factors — cytokines</td>
<td></td>
</tr>
<tr>
<td>Interleukin-1, tumor necrosis factor</td>
<td>Secondary factors in osteitis fibrosa</td>
</tr>
<tr>
<td>Interleukin-6</td>
<td></td>
</tr>
<tr>
<td>Interleukin-11</td>
<td></td>
</tr>
<tr>
<td>Interleukin-4</td>
<td></td>
</tr>
<tr>
<td>Endothelin</td>
<td>Potential factors in adynamic bone disease</td>
</tr>
<tr>
<td>Endothelium-derived relaxing factor</td>
<td></td>
</tr>
<tr>
<td>Retained products</td>
<td>May have direct effects on parathyroid hormone secretion and 1α,25-dihydroxycholecalciferol synthesis, in addition to causing hypocalcemia</td>
</tr>
<tr>
<td>Phosphatea</td>
<td></td>
</tr>
<tr>
<td>Beta₂-microglobulina</td>
<td></td>
</tr>
<tr>
<td>Parathyroid hormone–related protein (C-terminal fragments)</td>
<td>May contribute to adynamic bone disease</td>
</tr>
<tr>
<td>Growth factors</td>
<td>May contribute to osteopenia</td>
</tr>
<tr>
<td>Deficient osteogenic protein-1</td>
<td></td>
</tr>
<tr>
<td>Gonadal dysfunctiona</td>
<td></td>
</tr>
</tbody>
</table>

aHas a defined role in the pathogenesis of renal osteodystrophy.

bGonadal dysfunction in end-stage renal disease is complex, characterized by a tendency toward low serum concentrations of gonadal steroids and gonadotropins and hyperprolac- tinemia.
tors, such as 25-hydroxycholecalciferol deficiency, are involved in this potentially devastating form of osteodystrophy. The accumulation of unmineralized osteoid and the decrease in bone turnover despite resorptive activity result in a considerably weakened skeleton. Patients with osteomalacia often have skeletal deformities, bone pain, fractures, and marked musculoskeletal disability. This form of osteodystrophy is refractory to treatment with vitamin D sterols.

Adynamic Bone Disease

The pathogenesis of adynamic renal bone disease is poorly understood. This disease is most common in patients with end-stage renal disease who do not have secondary hyperparathyroidism (e.g., after parathyroidectomy), who have been overtreated with calcium and vitamin D, or who have diabetes mellitus or aluminum intoxication. The association between continuous ambulatory peritoneal dialysis and adynamic renal bone disease may be related to the greater transfer of calcium from the dialysate to the patient and suppression of parathyroid hormone secretion that occurs with this form of dialysis as compared with hemodialysis. Hypersecretion of parathyroid hormone may thus be required to maintain normal rates of bone formation in patients with end-stage renal disease, and the need to maintain bone remodeling at a normal level may be an inherent stimulus for hyperparathyroidism in such patients. As discussed above, this concept is supported by recent clinical studies.

The presence of adynamic bone disease in patients with end-stage renal disease who have normal parathyroid function suggests that the production of one or more suppressors of bone formation is increased (Table 2) or that other promoters of bone formation (growth factors) are not produced; either mechanism could contribute to the need for increased parathyroid hormone secretion. Recent reports that therapy for end-stage renal disease activates the immune system suggest that there are numerous candidates for suppression factors (Table 2), including interleukin-11, which may inhibit osteoblastic bone formation, and interleukin-4. Interleukin-1 and tumor necrosis factor α are generally considered to be activators of the remodeling cycle, but evidence that their soluble receptors and antagonists are increased during dialysis indicates that we still know little about the overall production and action of these factors in patients with end-stage renal disease. A net suppressive effect is possible, if the soluble receptors or antagonists override the actions of tumor necrosis factor α or interleukin-1. There may also be other inhibitors of bone remodeling in patients with end-stage renal disease, including nitrous oxide and fragments of parathyroid hormone–related protein.

In addition to the direct suppression of bone remodeling in end-stage renal disease, a deficiency of a factor involved in bone formation or growth may contribute to adynamic bone disease. Osteogenic protein-1 (also called bone morphogenic protein-7), a potent osteoblast growth factor, is produced by normal renal tubular cells. A deficiency of this factor may lead to the need for more parathyroid hormone.

Another important factor contributing to osteopenia in patients with end-stage renal disease is hypogonadism (Table 2). In both women and men with end-stage renal disease, serum concentrations of gonadal steroids tend to be low, as a result of a complex set of endocrine and nonendocrine factors. These factors include variable decreases in the secretion of follicle-stimulating hormone and luteinizing hormone and increased secretion of prolactin. As a result, anovulation, amenorrhea or oligomenorrhea, infertility, impotence, loss of libido, oligospermia, and gynecomastia can occur.

Although initial reports suggested that adynamic bone disease does not often cause symptoms, subsequent follow-up has shown that the disease is associated with an increased fracture rate, as compared with that in the general population, and an increased mortality rate, as compared with that among patients with other forms of osteodystrophy. Microfractures would be expected to cause bone pain in patients with osteopenia due to adynamic bone disease. Recent studies demonstrate that adynamic bone disease is associated with a decrease in the ability of the skeleton to take up calcium. The decrease in the number of remodeling sites in this disorder is equivalent to the decrease in the pool of exchangeable calcium and thus in skeletal calcium uptake, which is probably the basis for the higher incidence of hypercalcemia among patients with adynamic bone disease.

Diagnosis

The recognition that renal osteodystrophy encompasses a spectrum of disorders may increase the importance of performing a bone biopsy in order to make an accurate diagnosis. Patients with adynamic bone disease tend to have normal or reduced bone density, only slightly elevated serum alkaline phosphatase concentrations, low or normal serum parathyroid hormone concentrations, an absence of bone aluminum, and hypercalcemia. Parathyroid hormone measurements can be used to differentiate osteitis fibrosa or mixed disease from adynamic bone disease but are not sufficient to establish the type of osteodystrophy in an individual patient, especially if calcitriol has been administered. Standard clinical practice in treating patients with end-stage renal disease and renal osteodystrophy has evolved away from the performance of a diagnostic bone biopsy before the initiation of therapy, because of pain associated with the procedure and because the presence of osteitis fibrosa can be predicted on the basis of elevated serum concentrations of parathyroid hormone and alkaline phosphatase. In addition, serum aluminum concentrations, especially after the administration of deferoxamine, indicate the presence of aluminum-related bone disease. However, a bone biopsy remains the best way to ascertain the type of renal osteodystrophy. In addition, im-
proved in biopsy techniques have reduced postsurgical pain.

With the advent of assays for intact parathyroid hormone in serum, it is possible to vary dialysate calcium concentrations and administer calcium salts and vitamin D preparations in order to keep serum parathyroid hormone concentrations within a desired range, but the ideal serum parathyroid hormone concentration in a patient with end-stage renal disease is not known. The disease is associated with a resistance to the action of parathyroid hormone,46 which is thought to be due to down-regulation of parathyroid hormone receptors. The features of adynamic bone disease, however, suggest that other mechanisms contribute to a resistance to the action of parathyroid hormone and that higher serum parathyroid hormone concentrations may be required to overcome the inhibition of bone-remodeling factors or the deficiency of bone-forming factors in end-stage renal disease. Serum parathyroid hormone concentrations should probably be maintained at a level three to four times above the upper limit of normal, although in a recent study,47 children with higher serum parathyroid hormone concentrations who were receiving calcitriol therapy still had adynamic bone disease. Thus, calcitriol-induced suppression of osteoblast proliferation may increase the likelihood of adynamic bone disease even when serum parathyroid hormone concentrations are high, possibly because of the antiproliferative action of 1α,25-dihydroxycholecalciferol.

CURRENT MANAGEMENT RECOMMENDATIONS

The mainstays of the prevention and treatment of renal osteodystrophy continue to be phosphate binders and supplemental calcium.48

Control of Serum Phosphate

A low-phosphate diet is integral to the management of end-stage renal disease, because it is the best way to maintain a normal serum phosphate concentration. A phosphate binder, either calcium carbonate49 or calcium acetate,50 taken with each meal in proportion to the phosphate content of the meal, is usually also required; aluminum-containing phosphate binders should be avoided. Reducing dialysate magnesium concentrations and adding magnesium-containing binders to decrease the calcium salts may allow both the control of serum phosphate concentrations and higher doses of calcitriol70 (and Delmez J; personal communication). Magnesium inhibits mineralization, however, and its use requires careful monitoring of serum magnesium concentrations.

Control of Serum Calcium

Calcium malabsorption is very common in end-stage renal disease because of deficient 1α,25-dihydroxycholecalciferol. Serum calcium concentrations need to be maintained at the high end of the normal range in order to prevent or suppress oversecretion of parathyroid hormone.51 A dialysate calcium concentration of 7 mg per deciliter (1.75 mmol per liter) provides an influx of approximately 800 mg per treatment.72 The positive calcium balance is greater in patients treated with continuous ambulatory peritoneal dialysis than in those treated with hemodialysis, providing more effective suppression of parathyroid hormone secretion.51 This effect, along with greater phosphate removal,53 is probably the basis for the higher prevalence of adynamic renal bone disease that is associated with continuous ambulatory peritoneal dialysis. When calcium salts are required to control hyperphosphatemia, the increased dialysate calcium concentration may cause hypercalcemia. The dialysate calcium concentration should be reduced to 5 mg per deciliter (1.25 mmol per liter), a level that will not affect the calcium balance and will allow for sufficient oral intake of calcium salts to maintain normal serum phosphate concentrations.73 The timing of oral calcium intake is important; calcium taken between meals is more a calcium supplement than a phosphate binder.

Use of Vitamin D Analogues

Calcitriol and other vitamin D preparations (vitamin D, alfalcacidol, dihydrotachysterol, and calcifiedol) have been widely used to treat secondary hyperparathyroidism, as well as to correct deficient endogenous production of 1α,25-dihydroxycholecalciferol. These agents lessen bone pain, improve bone histologic characteristics, and suppress parathyroid hormone secretion by both raising serum calcium concentrations and inhibiting parathyroid hormone gene transcription.54 Calcitriol is the most potent agent in suppressing parathyroid hormone secretion, but it and all other vitamin D preparations can cause hypercalcemia. None of these agents should be used in the presence of hyperphosphatemia, to avoid high concentrations of serum calcium-phosphorus products and extraskeletal calcification. Intermittent intravenous or oral administration of calcitriol is perhaps the most effective means of suppressing parathyroid hormone secretion.54,55 Since vitamin D preparations suppress parathyroid hormone secretion and decrease the proliferation of osteoblasts, these agents should not be given to patients with adynamic bone disease. The use of vitamin preparations associated with a lower incidence of hypercalcemia before the initiation of therapy for end-stage renal disease will contribute substantially to the prevention of osteodystrophy.3

CONCLUSIONS

The recognition that a range of disorders account for renal osteodystrophy occurs at a time when our understanding of the pathogenesis of the disease is improving. New information about the physiology of bone remodeling in relation to the actions of cytokines and growth factors will increase our understanding of the pathophysiology of renal osteodystrophy. The possible discovery of additional substances with important pathophysiologic roles in osteitis fibrosa and adynamic bone disease may lead to improved approaches to the prevention and treatment of renal osteodystrophy.

